Answer:
Option B is correct. A nuclear alpha decay
Explanation:
Step 1
This equation is a nuclear reaction. So it can be an alpha decay or a beta decay
An α-particle is a helium nucleus. It contains 2 protons and 2 neutrons, for a mass number of 4.
During α-decay, an atomic nucleus emits an alpha particle. It transforms (or decays) into an atom with an atomic number 2 less and a mass number 4 less.
Thus, radium-226 decays through α-particle emission to form radon-222 according to the equation that is showed.
A Beta decay occurs when, in a nucleus with too many protons or too many neutrons, one of the protons or neutrons is transformed into the other.
Option B is correct. A nuclear alpha decay
Answer:
Explanation:
We have to start with the <u>reaction</u>:

We have the same amount of atoms on both sides, so, we can continue. The next step is to find the <u>number of moles</u> that we have in the 110.0 g of carbon dioxide, to this, we have to know the <u>atomic mass of each atom</u>:
C: 12 g/mol
O: 16 g/mol
Mg: 23.3 g/mol
If we take into account the number of atoms in the formula, we can calculate the <u>molar mass</u> of carbon dioxide:
In other words:
. With this in mind, we can calculate the moles:

Now, the <u>molar ratio</u> between carbon dioxide and magnesium carbonate is 1:1, so:

With the molar mass of
(
. With this in mind, we can calculate the <u>grams of magnesium carbonate</u>:
I hope it helps!
Answer:
I really dont know i just guessed :(
Explanation:
Water is produce bases and says