Answer:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
Explanation:
Chemical equation:
CO + O₂ → CO₂
Balanced chemical equation:
2CO + O₂ → 2CO₂
The standard enthalpy for the formation of CO = -110.5 kj/mol
The standard enthalpy for the formation of O₂ = 0 kj/mol
The standard enthalpy for the formation of CO₂ = -393.5 kj/mol
Now we will put the values in equation:
ΔH0reaction = [ΔHf0 CO2(g)] - [ΔHf0 CO(g) + ΔHf0 O2(g)]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol + 0]
ΔH0reaction = [-393.5 kj/mol] - [-110.5 kj/mol]
ΔH0reaction = -283 kj/mol
Answer:
The first condition is that ocean waters must be above 26 degrees Celsius (79 degrees Fahrenheit). Below this threshold temperature, hurricanes will not form or will weaken rapidly once they move over water below this threshold.
Answer is: <span>- delta G.
</span>The change in Gibbs free energy (ΔG), at constant temperature and pressure, is: <span>ΔG=ΔH−TΔS.
</span>ΔH<span> is the change in enthalpy.
</span>ΔS is change in entropy.
T is temperature of the system.
When ΔG is negative, a reaction (<span>occurs without the addition of external energy)</span><span> will be spontaneous (</span>exergonic).
Answer:
84672 J
Explanation:
From the question given above, the following data were obtained:
Height (h) = 72 m
Combined mass (m) = 120 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
We can obtain the energy by using the following formula:
E = mgh
Where
E => is the energy.
g => is the acceleration due to gravity
m => is the mass.
h => is the height.
E = 120 × 9.8 × 72
E = 84672 J
Thus, the energy is 84672 J