Fireworks changes chemical energy into light energy
Answer:
The change in entropy of the surrounding is -146.11 J/K.
Explanation:
Enthalpy of formation of iodine gas = 
Enthalpy of formation of chlorine gas = 
Enthalpy of formation of ICl gas = 
The equation used to calculate enthalpy change is of a reaction is:
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(2\times \Delta H_f_{(ICl)})]-[(1\times \Delta H_f_{(I_2)})+(1\times \Delta H_f_{(Cl_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28ICl%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_f_%7B%28I_2%29%7D%29%2B%281%5Ctimes%20%5CDelta%20H_f_%7B%28Cl_2%29%7D%29%5D)
![=[2\times 17.78 kJ/mol]-[1\times 0 kJ/mol+1\times 62.436 kJ/mol]=-26.878 kJ/mol](https://tex.z-dn.net/?f=%3D%5B2%5Ctimes%2017.78%20kJ%2Fmol%5D-%5B1%5Ctimes%200%20kJ%2Fmol%2B1%5Ctimes%2062.436%20kJ%2Fmol%5D%3D-26.878%20kJ%2Fmol)
Enthaply change when 1.62 moles of iodine gas recast:

Entropy of the surrounding = 

1 kJ = 1000 J
The change in entropy of the surrounding is -146.11 J/K.
Answer:
H2O is a compound because its a main constitute of earths hydrosphere
Answer:
Rb2CO3(aq)+Fe(C2H3O2)2(aq)--> 2Rb(C2H3O2)(aq) + FeCO3(s)
Explanation:
The reaction shown in the answer is the reaction of rubidium carbonate and iron II acetate. Rubidium is far more reducing than Fe II hence it can displace Fe II from its salt as shown.
The reducing property of metals depends on the value of their individual electrode potential values. For rubidium, its standard reduction potential is -2.98 V while that of Fe II is -0.44V. Hence rubidium can displace Fe II from its salt as shown above.