Answer:
A:
Explanation:
Plane mirrors always form virtual images meaning although the object appears to be in the other side of the mirror the light rays actually originate in front of it. The image is inverted meaning that when you lift your right hand it shows your left hand rising. and with true orientation.
The shape is missing but let's consider it a semi-cylinder attached to the rectangular prism.
Given:
radius = 4.5 mm
<span>Height = 11 mm </span>
<span>Volume of cylinder = (1/2)(pi)(4.5)^2(11) (the shape is divided into half)
V = 349.89 mm cubed
Volume of prism = L x W x H
= 9 x 11 x 6
= 594 mm cubed
Total volume of the composite shape = 111.375 + 594
= 943.89 mm cubed
Rounded answer = 944 mm cubed.</span>
Answer:
10 cm
Explanation:
Được
Tần số = 50 hertz
Khoảng cách đã đi = 25 m
Thời gian đi quãng đường 25 m = 5 giây
Tốc độ của sóng = 25/5 = 5 mét trên giây
Như chúng ta biết
Bước sóng = Vận tốc / tần số
Bước sóng = 5 mét trên giây / 50 trên giây
Bước sóng = 0,1 m = 10 cm
Answer:
a) # buses = 7
Explanation:
For this exercise we use the kinematic equations, let's find the time it takes to reach the same height
y =
t - ½ g t²
Let's decompose the speed, with trigonometry
v₀ₓ = v₀ cos θ
= v₀ sin θ
v₀ₓ = 40 cos 32
v₀ₓ = 33.9 m / s
= 40 sin32
= 21.2 m / s
When it arrives it is at the same initial height y = 0
0 = (
- ½ gt) t
That has two solutions
t = 0 when it comes out
t = 2
/ g when it arrives
t = 2 21.2 /9.8
t = 4,326 s
We use the horizontal displacement equation
x = vox t
x = 33.9 4.326
x = 146.7 m
To find the number of buses we can use a direct proportions rule
# buses = 146.7 / 20
# buses = 7.3
# buses = 7
The distance of the seven buses is
L = 20 * 7 = 140 m
b) let's look for the scope for this jump
R = vo2 sin2T / g
R = 40 2 without 2 32 /9.8
R = 146.7 m
As we can see the range and distance needed to pass the seven (7) buses is different there is a margin of error of 6.7 m in favor of the jumper (security)
Answer:
Create
Broken
Explanation:
Bond formation or creation requires the use of energy. Energy is used during bond formation between chemical species. The energy is required for the reaction to occur.
- When bonds are broken, energy is released
- Bond breaking process is a procedure that releases energy.
- This energy makes them able to react.