The statement would be False. T<span>he potential energy of a membrane potential comes solely from the difference in electrical charge across the membrane. In addition to that, membrane potential actually regulates the potential difference of nerve cells across the membrane estimated at 70 mV.</span>
Answer:
Option A. 180000 Kgm/s.
Explanation:
From the question given above, the following data were obtained:
For Train Car A:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
For Train Car B:
Mass of train car B = 45000 Kg
Velocity of train car B = 0 m/s
Momentum is simply defined as the product of mass and velocity. Mathematically, it can be expressed as:
Momentum = mass × velocity
With the above formula, the momentum of train car A before collision can be obtained as follow:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
Momentum = mass × velocity
Momentum = 45000 × 4
Momentum of train car A = 180000 Kgm/s
Answer:
330 m/s approx
Explanation:
The RMS speed of a gas is proportional to square root of its absolute temperature is
V ( RMS ) ∝ √T

Here V₁ = 200 , T₁ = 23 +273 = 300K , T₂ = 227 +273 = 500 K
Putting the values
200 / V₂ = 
V₂ = 330 m/s approx
Answer:
21.67 rad/s²
208.36538 N
Explanation:
= Final angular velocity = 
= Initial angular velocity = 78 rad/s
= Angular acceleration
= Angle of rotation
t = Time taken
r = Radius = 0.13
I = Moment of inertia = 1.25 kgm²
From equation of rotational motion

The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²
Torque is given by

Frictional force is given by

The magnitude of the force of friction applied by the brake shoe is 208.36538 N