Answer: The maximum revenue is $7482 . To get a maximum yield , The number of trees per acre needed is 43.
Step-by-step explanation:
Solution:
Let x represent the extra tree
So for an additional tree the yield of each tree will decrease by 4 bushels.
(80 +x)(26-4x) by expanding
2080 - 320x +26x -4x^2
Using x= -b/2a
X= 294/ -8
X= - 36.75
So apparently he currently has far too many trees per acre. To get the maximum yield , she needs to reduce the number of trees per acre by 36.75
So the number of trees per acre for maximum yield is
80-36.75
=43.25
Approximately x=43
So by reducing he get extra bushel in the tune of 174.
Total revenue= 174 ×43× 1$
=$7482
There is no triangle below. Try to edit this problem.
Answer:
y= -12x - 77
Step-by-step explanation:
HOPE THIS HELPS
Answer:
y = 3/2x - 5
Step-by-step explanation:
To find the equation of the line
Step 1: find slope
( 2 , -2) ( 4 , 1)
x_1 = 2
y_1 = -2
x_2 = 4
y_2 = 1
Insert the values into
m = (y_2 - y_1) / (x_2 - x_1)
m = ( 1 - (-2) / (4 - 2)
= ( 1 + 2) / ( 4 -2 )
= 3 / 2
m = 3/2
Step 2: substitute m into the equation
y = mx + c
y = 3/2x + c
Step 3: substitute any of the two points into the equation
Let's pick (4 , 1)
x = 4
y = 1
y = 3/2x + c
1 = 3/2(4) + c
1 = 3*4/2 + c
1 = 12/2 + c
1 = 6 + c
1 - 6 = c
c = 1 - 6
c = -5
Step 4 : substitute c into the equation
y = 3/2x + c
y = 3/2x - 5
The equation of the line is
y = 3/2x - 5
The geometric sequence is given by:
an=ar^(n-1)
where:
a=first term
r=common ratio
n is the nth term
given that a=4, and second term is -12, then
r=-12/4=-3
hence the formula for this case will be:
an=4(-3)^(n-1)
where n≥1