The answer is Graph C. To explain, this is because as we look at the position vs time graph, we see that after the first second, it was 30 meters from the start. That would mean that it took 1 second to get to 30 meters. That is shown in Graph c
Answer:
The answer is: The increased voltage causes an increase in power usage, and the device will over-heat.
Explanation:
First, we must consider the variables of the electrical system that will allow us to respond. In this case, power, current and voltage, which are related by

Where P=Power, V=Voltage, I=Current.
In the equation it can be observed that power is directly proportional to the system voltage. Thus, if the voltage increases as in this case, the power will also increase, which overheats the device and can cause damage to it.
<h2>The temperature of the air is 66.8° C</h2>
Explanation:
From the Newton's velocity of sound relationship , the velocity of sound is directly proportional to the square root of temperature .
In this case The velocity of sound = frequency x wavelength
= 798 x 0.48 = 383 m/sec
Suppose the temperature at this time = T K
Thus 383 ∝
I
The velocity of sound is 329 m/s at 273 K ( given )
Thus 329 ∝
II
Dividing I by II , we have
= 
or
= 1.25
and T = 339.8 K = 66.8° C
Answer:a supposition or proposed explanation made on the basis of limited evidence as a starting point for further investigation.
Hope This helps!!
Because your brain cant handle all of the information.