Explanation:
When an object is moving in a circular path, the motion of the object is called uniform circular motion. The object moves under the action of centripetal acceleration. It is given by :

r is the radius of circular path
v is the speed of the object
In uniform circular motion, the object moves with constant speed. Also, the velocity of the object keeps on changing because it changes direction at every instant of time. Also, the object is accelerating due to change in velocity.
So, the correct options are (b) and (c).
Answer:
v<em>min</em> = 0.23 m/s
Explanation:
The golf ball must travel a distance equal to its diameter in the time between blade arrivals to avoid being hit. If there are 12 blades and 12 blade openings and they have the same width, then each blade or opening is 1/24 of a circle of is 2π/24 = 0.26 radians across.
Therefore, the time between the edge of one blade moving out of the way and the next blade moving in the way is
time = angular distance/angular velocity
⇒ t = 0.26 rad / 1.35 rad/s = 0.194 s
The golf ball must get completely through the blade path in this time, so must move a distance equal to its diameter in 0.194 s, therefore the speed of the golf ball is
v =d/t
⇒ v = 0.045 m / 0.194 s = 0.23 m/s
Answer:
1.95m/s
Explanation:
Please view the attached file for the detailed solution.
The following were the conversion factors used in order to express all quatities in SI units:

Answer:
1000 N
Explanation:
First, we need to find the deceleration of the running back, which is given by:

where
v = 0 is his final velocity
u = 5 m/s is his initial velocity
t = 0.5 s is the time taken
Substituting, we have

And now we can calculate the force exerted on the running back, by using Newton's second law:

so, the magnitude of the force is 1000 N.
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.