Answer:
Horizontal force = 89.2 N
Explanation:
The frictional force = coefficient of friction * magnitude of the force (weight of the body) * cos theta
Substituting the given values, we get -
Frictional Force = 0.3*300 * cos 25 = 89.2 N
Horizontal force = 89.2 N
Answer:
work=281.4KJ/kg
Power=4Kw
Explanation:
Hi!
To solve follow the steps below!
1. Find the density of the air at the entrance using the equation for ideal gases
where
P=pressure=120kPa
T=20C=293k
R= 0.287 kJ/(kg*K)=
gas constant ideal for air
2.find the mass flow by finding the product between the flow rate and the density
m=(density)(flow rate)
flow rate=10L/s=0.01m^3/s
m=(1.43kg/m^3)(0.01m^3/s)=0.0143kg/s
3. Please use the equation the first law of thermodynamics that states that the energy that enters is the same as the one that must come out, we infer the following equation, note = remember that power is the product of work and mass flow
Work
w=Cp(T1-T2)
Where
Cp= specific heat for air=1.005KJ/kgK
w=work
T1=inlet temperature=20C
T2=outlet temperature=300C
w=1.005(300-20)=281.4KJ/kg
Power
W=mw
W=(0.0143)(281.4KJ/kg)=4Kw
Answer:
(a) 0 kJ
(b) 9.81 kJ
(c) 31.32 m/s
Explanation:
(a)
From the law of conservation of energy, energy can only be transformed from one state to another. At a height of 50 m, all the kinetic energy is converted to potential energy hence KE=0
(b)
Potential energy, PE=mgh where m is the mass, g is acceleration due to gravity and h is the height
Substituting 50 m for h and 20 Kg for m, taking g as 9.81 then
PE=20*9.81*50=9810 J=9.81 kJ
(c)
Relating the equation of potential energy to the equation of kinetic energy, which is
where v is the velocity of the mass
Substituting 50 m for h and taking g as 9.81 then