Answer:
c. Solar eclipses would be much more frequent.
Explanation:
The <u>ecliptic plane</u> is the apparent orbit that the sun describes around the earth (although it is the earth that orbits the sun), is the path the sun follows in earth's sky.
A <u>solar eclipse</u> occurs when the moon gets between the earth and the sun, so a shadow is cast on the earth because the light from the sun is blocked.
The reason why solar eclipses are not very frequent is because the moon's orbital plane is not in the same plane as the orbit of the earth around the sun, but rather that it is somewhat inclined with respect to it.
So <u>if both orbits were aligned, the moon would interpose between the sun and the earth more frequently, producing more solar eclipses.</u>
So, if the moon's orbital plane were exacly the same as the ecliptic plane solar eclipses would be more frequent.
the answer is: c.
Answer:
<u>Amplitude - remains the same</u>
<u>Frequency - increases</u>
<u>Period - decreases</u>
<u>Velocity - remains the same.</u>
<u />
Explanation:
The amplitude of the wave remains the same since you are not changing the distance your hand moves and the amplitude of the wave depends on how much distance your hand covers while moving.
The frequency of your wave increases since now you are moving your hand more number of times in the same period i.e. your hand is moving faster in one second. So, the frequency of your wave increases.
The period is the time taken by the wave to travel a certain distance. Since your hand is now moving faster, the wave will travel faster and will take less time to cover the same distance hence, we can say that its period will decrease.
The velocity of a wave depends on the medium in which it is travelling. Your wave was previously travelling in air and the new wave is also travelling in the same medium so the velocity of the wave remains unchanged.
Um student a because they were there a few seconds ahead
Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation
By putting the values
v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that
By putting the values
h=0.1805 m
h=18.05 cm