Note the atom of the Oxygen is electrically neutral, meaning it has equal numbers of electrons and protons.
So if it gains 2 electrons, it would have excess of 2 electrons, hence its charge would be -2.
Option B.
Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is

For N = 1

We need to calculate the current
Using formula of current

Put the value of emf

Now, if the number of turn is 22 , then induced emf would be

Then the current would be




Hence, The current would be same in both situation.
1. 
Explanation:
We have:
voltage in the primary coil
voltage in the secondary coil
The efficiency of the transformer is 100%: this means that the power in the primary coil and in the secondary coil are equal

where I1 and I2 are the currents in the two coils. Re-arranging the equation, we find

which means that the current in the secondary coil is 14% of the value of the current in the primary coil.
2. 5.7 V
We can solve the problem by using the transformer equation:

where:
Np = 400 is the number of turns in the primary coil
Ns = 19 is the number of turns in the secondary coil
Vp = 120 V is the voltage in the primary coil
Vs = ? is the voltage in the secondary coil
Re-arranging the formula and substituting the numbers, we find:

That's the definition of the PERIOD of the vibration.
It's exactly the reciprocal of the vibration's frequency.
Answer:
The minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m
Explanation:
We know by equation of motion that,

Where, v= final velocity m/sec
u=initial velocity m/sec
a=Acceleration m/
s= Distance traveled before stop m
Case 1
u= 13 m/sec, v=0, s= 57.46 m, a=?

a = -1.47 m/
(a is negative since final velocity is less then initial velocity)
Case 2
u=29 m/sec, v=0, s= ?, a=-1.47 m/
(since same friction force is applied)

s = 285.94 m
Hence the minimum stopping distance when the car is moving at
29.0 m/sec = 285.94 m