a una velocidad de
22 m/s, quien lo golpea y devuelve en la misma
dirección con una velocidad de 14 m/s. Si el
tiempo de contacto del balón con la jugadora es
de 0,03 s, ¿con qué fuerza golpeó la jugadora el
balón?
21 Una bala de 0,8 g, está en la recámara de un rifl e
cuando se g
A) use v=u+at for both
First section, v=27, u=0, a=2.4. You should get 11seconds.
Second section, v=0, u=27, a=-1.3. You should get 21seconds.
This means that the total time is 22seconds.
b) You can either use s=ut+0.5at^2 or v^2=u^2+2as. Personally, I would use the second one as you are not relying on your previous answer.
First section, v=27, u=0, a=2.4. You should get 152m.
Second section, v=0, u=27, a=-1.3. You should get 280m.
This makes your overall displacement 432m.
<h2>Answer: Any new and abnormal growth</h2>
A <u>neoplasm</u> is any <u>uncontrolled growth</u> of abnormal cells or tissues in the body.
This abnormal mass can be benign or malignant (carcinogenic).
Therefore, the correct option is D.
Explanation:
If two particles are involved in an elastic collision, the velocity of the second particle after collision can be expressed as: v2f=2⋅m1(m2+m1)v1i+(m2−m1)(m2+m1)v2i v 2 f = 2 ⋅ m 1 ( m 2 + m 1 ) v 1 i + ( m 2 − m 1 ) ( m 2 + m 1 ) v 2 i .
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached