This is a redox reaction, meaning reduction-oxidation reaction. This represents the reaction in one side of the electrode in an electrolysis set-up. First, we find the oxidation number of Cu in CuSO4:
(ox. # of Cu)+ ox.# of S + 4(ox.# of oxygen) = 0
(ox. # of Cu) + (6) + 4(-2) = 0
ox. # of Cu = 2+
CuSO4 ---> Cu + SO42-
Cu2+ + SO42- ----> Cu + SO42-
Cu2+ -----> Cu + 2e- (net ionic reaction)
The stoichiometric equation would be 2 electrons per mole Copper. Copper has a molar mass of <span>63.5 g/mol. Then, it would only need 2 electrons.
</span>
Answer:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Explanation:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
The above equation can be balance as illustrated below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + HF + CoF₂
There are 16 atoms of H on the left side and 1 atom on the right side. It can be balance by writing 16 before HF as shown below:
C₇H₁₆ + CoF₃ —> C₇F₁₆ + 16HF + CoF₂
There are 3 atoms of F on the left side and a total of 34 atoms on the right side. It can be balance by writing 32 before CoF₃ and 32 before CoF₂ as shown below:
C₇H₁₆ + 32CoF₃ —> C₇F₁₆ + 16HF + 32CoF₂
Now, the equation is balanced.
Answer:
A
Explanation:
With the given choices, A would be correct for this question. But, both liquids and gases have particles that are far apart so that they can fill their containers.