Answer:
6.3 m/s
Explanation:
m = mass of the block = 1.10 kg
k = spring constant of the spring
x = stretch in the spring = 0.2 m
t = time taken by block to come to zero speed first time = 0.100 s
T = Time period of oscillation
Time period of oscillation is given as
T = 2t
T = 2 (0.1)
T = 0.2 s
Time period is also given as


k = 1084.6 N/m
v = maximum speed of the block
using conservation of energy
Maximum kinetic energy = Maximum spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(1.10) v² = (1084.6) (0.2)²
v = 6.3 m/s
<span>The time needed for a wave to make one complete cycle is its period.</span>
Well most of the particles did pass through and a few were deflected. but i think the answer is A
Answer:
Explanation:
For an electric force, F the formula:
F = kQq/r^2
Given:
r2 = 1/2 × r1
F1 × r1 = k
F1 × r1 = F2 × r2
F2 = (F1 × r1^2)/(0.5 × r1)^2
= (F1 × r1^2)/0.25r1^2
= 4 × F1.
Answer:
a. It always points perpendicular to the contact surface.
Explanation:
"Normal" means perpendicular. Normal forces are always perpendicular to the contact surface.