Answer:
We have to add 9.82 grams of calcium acetate
Explanation:
Step 1: Data given
Molarity of the calcium acetate solution = 0.207 M
Volume = 300 mL = 0.300 L
Molar mass calcium acetate = 158.17 g/mol
Step 2: Calculate moles calcium acetate
Moles calcium acetate = molarity * volume
Moles calcium acetate = 0.207 M * 0.300 L
Moles calcium acetate = 0.0621 moles
Step 3: Calculate mass calcium acetate
Mass calcium acetate = moles * molar mass
Mass calcium acetate = 0.0621 moles * 158.17 g/mol
Mass calcium acetate = 9.82 grams
We have to add 9.82 grams of calcium acetate
Low melting points and boiling points. ...Low enthalpies of fusion and vaporization These properties are usually one or two orders of magnitude smaller than they are for ionic compounds.Soft or brittle solid forms. ...Poor electrical and thermal conductivity.
Answer:
Explanation:
The lewis structure (indicating all the atoms and patterns provided as hint in the question) of glycine can be seen in the attachment below. While the chemical structure of glycine can be seen below
H
|
H₂N - C - C =O
| \
H OH
The structure (of glycine) above provides a "fair idea" of how the lewis structure will be.
It is called a dactyloscopy
Here we have to choose the right option which tells the moles of CaCl₂ will react with 6.2 moles of AgNO₃ in the reaction
2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
6.2 moles of silver nitrate (AgNO₃) will react with B. 3.1 moles of calcium chloride (CaCl₂).
From the reaction: 2AgNO₃ + CaCl₂→ 2AgCl + Ca(NO₃)₂
Thus 2 moles of AgNO₃ reacts with 1 mole of CaCl₂
Henceforth, 6.2 moles of AgNO₃ reacts with
= 3.1 moles of CaCl₂.
1 mole of CaCl₂ reacts with 2 moles of AgNO₃. Thus-
A. 2.2 moles of CaCl₂ will react with 2.2×2 = 4.4 moles of AgNO₃.
C. 6.2 moles of CaCl₂ will reacts with 6.2×2 = 12.4 moles of AgNO₃.
D. 12.4 moles of CaCl₂ will reacts with 12.4 × 2 = 24.8 moles of AgNO₃
Thus the right answer is 6.2 moles of AgNO₃ will react with 3.1 moles of CaCl₂.