Answer:
8.85 Ω
Explanation:
Resistance of a wire is:
R = ρL/A
where ρ is resistivity of the material,
L is the length of the wire,
and A is the cross sectional area.
For a round wire, A = πr² = ¼πd².
For aluminum, ρ is 2.65×10⁻⁸ Ωm, or 8.69×10⁻⁸ Ωft.
Given L = 500 ft and d = 0.03 in = 0.0025 ft:
R = (8.69×10⁻⁸ Ωft) (500 ft) / (¼π (0.0025 ft)²)
R = 8.85 Ω
Did not engineer cables factoring wind shear
The KVA rating of the step down transformer at the given power factor would be 62.5 kVA.
<h3>
What is power factor of a transformer?</h3>
Power factor (PF) is the ratio of working power, measured in kilowatts (kW), to apparent power, measured in kilovolt amperes (kVA).
PF = working power / apparent power
PF = kW/kVA
kVA = kW/PF
kVA = 50 kW/0.8
kVA = 62.5 kVA
Thus, the KVA rating of the step down transformer at the given power factor would be 62.5 kVA.
Learn more about power factor here: brainly.com/question/7956945
#SPJ1
Answer:
Three material considerations are;
1. Identify and appraise the attainment of the goal of the with the design specification
2. Ascertain the required load the product being designed will experience and the suitability of the design specification to that load
3. Review the producibility of the design to ensure that it can be produced with the available technology
Explanation:
1. The appraisal of the design includes the consideration of the factors of the design and the building of reliability and efficiency into the design from the beginning
2. Ascertain if the product will require toughness, elasticity, and if will be subject to sudden or repeated loading conditions
3. Ensure that the design can be readily produced with the accessible manufacturing equipment during the conceptualization stage of the design.