Answer:
The volume of the gas will be 78.31 L at 1.7 °C.
Explanation:
We can find the temperature of the gas by the ideal gas law equation:

Where:
n: is the number of moles
V: is the volume
T: is the temperature
R: is the gas constant = 0.082 L*atm/(K*mol)
From the initial we can find the number of moles:

Now, we can find the temperature with the final conditions:

The temperature in Celsius is:

Therefore, the volume of the gas will be 78.31 L at 1.7 °C.
I hope it helps you!
The answer is the letter C
Earth contains huge quantities of water in its oceans, lakes, rivers, the atmosphere, and believe it or not, in the rocks of the inner Earth. Over millions of years, much of this water is recycled between the inner Earth, the oceans and rivers, and the atmosphere. This cycling process means that freshwater is constantly made available to Earth's surface where we all live. Our planet is also very efficient at keeping this water. Water, as a vapor in our atmosphere, could potentially escape into space from Earth. But the water doesn't escape because certain regions of the atmosphere are extremely cold. (At an altitude of 15 kilometers, for example, the temperature of the atmosphere is as low as -60° Celsius!) At this frigid temperature, water forms solid crystals that fall back to Earth's surface.
Many people live faraway from freshwater sources. They need to carry their water home.
While our planet as a whole may never run out of water, it's important to remember that clean freshwater is not always available where and when humans need it. In fact, half of the world's freshwater can be found in only six countries. More than a billion people live without enough safe, clean water.
Also, every drop of water that we use continues through the water cycle. Stuff we put down the drain ends up in someone or something else's water. We can help protect the quality of our planet's freshwater by using it more wisely.
We have been given the condition that carbon makes up 35%
of the mass of the substance and the rest is made up of oxygen. With this, it
can be concluded that 65% of the substance is made up of oxygen. If we let x be
the mass of oxygen in the substance, the operation that would best represent
the scenario is,
<span> x = (0.65)(5.5 g)</span>
<span> <em> </em><span><em>x =
3.575 g</em></span></span>
Answer:
Kc = 1.54e - 31 / 2.61e - 24
Explanation:
1 )
; Kc = 1.54e - 31
2)
; Kc = 2.16e - 24
upon reversing ( 2 ) equation
Kc = 1/2.16e - 24
now adding 1 and reversed equation (2)


we get ,
Kc = 1.54e-31 × 1/2.61e - 24
equilibrium constant of equation (3) is -
Kc = 1.54e - 31 / 2.61e - 24