Answer:
The temperature attains equilibrium with the surroundings.
Explanation:
When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.
Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.
Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.
The best step for the engineers to make next is option D. Begin to design an airplane using this metal.
<h3>What is the metallic is plane parts?</h3>
Aluminum and its alloys are nevertheless very famous uncooked substances for the production of business planes, because of their excessive electricity at exceedingly low density. Currently, excessive-electricity alloy 7075, which includes copper, magnesium and zinc, is the only used predominantly withinside the plane industry.
The solution is D, due to the fact even as it's far crucial to marketplace the fabric and ensure humans are inquisitive about buying, they first want to attempt to layout aircraft the usage of this fabric. There isn't anyt any use promoting an aircraft constituted of this material_ if a aircraft can not be built.
Read more about the aircraft:
brainly.com/question/5055463
#SPJ1
Answer:
The spring is compressed by 0.275 meters.
Explanation:
For equilibrium of the gas and the piston the pressure exerted by the gas on the piston should be equal to the sum of weight of the piston and the force the spring exerts on the piston
Mathematically we can write

we know that


Now the force exerted by an spring compressed by a distance 'x' is given by 
Using the above quatities in the above relation we get
