Answer:
DONORS: If the material for which it substitutes has more electrons than the original
ACCEPTORS: If the replacement material has fewer electrons than the original material
Fermi level: the point where the probability of finding the last electron is ½
Explanation:
When in a semiconductor material a small fraction of an element is replaced by another with different valences, an excess charge is created.
If the material for which it substitutes has more electrons than the original, there is an excess of electrons, these excess electrons are weakly bound in the material and their orbits are large, in an energy versus moment diagram their energy places them a little more below the conduction band, these materials are called DONORS.
If the replacement material has fewer electrons than the original material, one electron is missing to complete the bonds, so there is a movement of the other electrons, an easier way to analyze this movement of the (n-1) electrons is to suppose that The missing charge has a positive charge and to study its movement, this positive charge is called a hole, its binding energy is small so the orbit of the hole is large, in an energy diagram it is located a little above the band of valence, these are called ACCEPTORS
The Fermi level is defined as the point where the probability of finding the last electron is ½, when the temperature is changed the density of states of the bands changes, therefore the location point moves, but its [probability remains ½
Answer:
Yes
Explanation: Electric and magnetic field are known to be inter-related, this implies that for any current carrying conductor there is a resulting magnetic field around the wire ( for example a current carrying conductor deflects a compass) and a magnetic field has been known to produce some amount current based on the<em> </em>principle of electromagnetic induction by Micheal Faraday.
The strength of magnetic field generated by a current carrying conductor is given by Bio-Savart law (purely mathematical) which is
B =
B= strength of magnetic field
I =current on conductor
r = distance on any point of the conductor relative to it center
If a current carrying could generate this magnitude of magnetic field, thus this magnetic field has the ability to interact (exert a force on any magnetic material) with any other magnetic material including a magnet.
Yes, a current carrying conductor can exert a force on a magnetic field
<span>Some geographic areas endure cycles between these two processes called transgressive-regressive sequences. The rocks of western Pennsylvania are one example. Sandy beaches often leave observable records of transgression by covering marsh sediments that were once behind it as it moves inland. The original sediments are then covered by even deeper water sediments, which geologists can trace and record. It is generally believed that transgression will increase in accordance with rising sea levels worldwide</span>
Answer:
241.8 N.
Explanation:
The force on branch provides a reaction to the ape's weight force plus the centripetal force needed to keep the gibbon in a circular motion of radius 0.60 m.
Centripetal force = mv^2/r
F = mg + mv²/r
F = m(g + v²/r)
where,
m = mass
= 9 kg
g = acceleration due to gravity
= 9.8 m/s²
v = 3.2 m/s
r = 0.60 m
F = 9 * (9.8 + 3.2²/0.60)
= 241.8 N.