Answer:
58.8J
Explanation:
Given parameters;
Mass of ball = 4kg
Height above the floor = 1.5m
g = 9.8n/kg
Unknown:
Potential energy = ?
Solution:
The potential energy of a body is the energy due to the position of the body.
It is mathematically expressed as:
Potential energy = mass x acceleration due to gravity x height
Potential energy = 4 x 9.8 x 1.5 = 58.8J
Answer:
D-slower than the clock on the rocket.
Explanation:
In 1905, Albert Einstein devised the theory that states that laws of physics are the same for all non-accelerating observers, and that the speed of light in a vacuum was independent of the motion of all observers. This conclusion is generally referred to as the theory of special relativity. It defined an entirely new framework for physics as well as proposed new concepts of space and time.
He discovered that space and time were interwoven into a single continuum known as space-time. According to him, events that occur at the same time for one observer could occur at different times for another, hence the answer.
If the length of the wire increases, then the amount of resistance will also increase.
1. Take a long piece of wire and cut it 10 pieces. Those pieces should all be different sizes, one should be 5___ (units in meter, cm, inches, etc.), and the next should be 5 ___ (units in meter, cm, inches, etc.) more than the one before.
2. Take one piece of wire and measure the resistance using ___ and record the results in the data table.
3. Repeat the previous step with all the pieces of wire.
4. Compare and contrast the results you have found.
I hope this helps a bit :)
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Answer:
3 m/s
Explanation:
Average Speed = 
Plug in the numbers, it will be (6m + 3m) divided by (2s + 1s), which is 9m/3s, which equals to 3m/s.