Answer:
r = 1.63×10^5 mi
Explanation:
Let r = distance of object from earth
Rs = distance between earth and sun
Ms = mass of the sun
= 3.24×10^5 Me (Me = mass of earth)
At a distance R from earth, the force Fs exerted by the sun on the object is equal to the force Fe exerted by the earth on the object. Using Newton's universal law of gravitation,
Fs = Fe
GmMs/(Rs - r)^2 = GmMe/r^2
This simplifies to
Ms/(Rs - r)^2 = Me/r^2
(3.24×10^5 Me)/(Rs - r)^2 = Me/r^2
Taking the reciprocal and then its square root, this simplifies further to
Rs - r = (569.2)r ----> Rs = 570.2r
or
r = Rs/570.2 = (9.3×10^7 mi)/570.2
= 1.63×10^5 mi
Answer:
The blue light
Explanation:
Spectrums of visible light with longer wavelength are absorbed more quickly such as red than those with shorter wavelength. This contributes to why blue with higher energy and shorter wavelength is able to penetrate deeply compared to others that are easily absorbed. Blue light persist longer so it reaches the depth first while so of others are absorbed.
B because 2800 divide by 40 is 20
Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters