Answer:
The wavelengths of C1 is 10.4m, A6 is 0.193m and B7 is 0.0861m
Explanation:
Using the formula V = f×λ . Then substitute the following values into the formula:
a) v=340m/s
f=32.7 Hz
λ=V ÷ f
= 340 ÷ 32.7
= 10.4m (3s.f)
b) λ=340 ÷ 1760
= 0.193m (3s.f)
c) λ=340÷3951.1
= 0.0861m (3s.f)
(Correct me if I am wrong)
Answer:
The velocity just before hitting the ground is 
Explanation:
From the question we are told that
The initial speed is 
The final speed is 
From the equations of motion we have that

Where s is the distance travelled which is the height of the cliff
So making it the subject of the the formula we have that

Where a is the acceleration due to gravity with a value 
So


Now we are told that was through horizontally with a speed of

Which implies that this would be its velocity horizontally through out the motion
Now it final velocity vertically can be mathematically evaluated as

Substituting values


The resultant final velocity is mathematically evaluated as

Substituting values


If you know the real modulus of the cable (Y), the length, and the area (based on the radius), you can compute the spring constant, k = AE/L. Then, if you know the force used, you can compute the displacement, using F = kd, or d = F / k = FL/(AE). Our answer should work out to units of length. So,
d = 803 N * 9.06 m / [pi*(0.574 cm)^2 * 2.0 x 10^11 N/m^2]
d = 3.5 x 10^-8 Nm^3 / (cm^2 * N)
d = 3.5 x 10^-8 m^3 / cm^2 * (100 cm / 1 m)^2
d = 3.5 x 10^-4 m
The answer using the graphical method and analytical method of vector addition will always be
C. Same
Analytic method means adding vectors (x₁,y₁) and (x₂,y₂) give (x₁+x₂,y₁+y₂)
Example: Addition of (2,3) and (1,1) gives (3,4)
Solving it graphically will also give (3,4)