1.<span> B. Turpentine
2. </span><span>C. Move on to another forested area.
3. </span><span>A. Starting a tree plantation
4. D. </span><span>Clear-cutting
</span>5. C. <span>Controlled burning</span>
Answer:
7.78 * 10³ m/s
Explanation:
Orbital velocity is given as:
v = √(GM/R)
G = 6.67 * 10^(-11) Nm/kg²
M = 5.98 * 10^(24) kg
R = radius of earth + distance of the satellite from the surface of the earth
R = 2.15 * 10^(5) + 6.38 * 10^(6)
R = 6.595 * 10^(6) m
v = √([6.67 * 10^(-11) * 5.98 * 10^(24)] / 6.595 * 10^(6))
v = √(6.048 * 10^7)
v = 7.78 * 10³ m/s
Answer:
The circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.
Explanation:
Since the magnetic field, B points in my direction and the current, I is moving in a clockwise direction, the current is always perpendicular to the magnetic field and will thus experience a constant force, F = BILsinФ where Ф is the angle between B and L.
Since the magnetic field is in my direction, it is perpendicular to the plane of the circular loop and thus perpendicular to L where L = length of circular loop. Thus Ф = 90° and F = BILsin90° = BIL
According to Fleming's left-hand rule, the fore finger representing the magnetic field, the middle finger represent in the current and the thumb representing the direction of force on the circular loop.
At each point on the circular loop, the force is always directed towards the center of the loop and thus tends to compress it.
<u>So, the circular loop experiences a constant force which is always directed towards the center of the loop and tends to compress it.</u>
When light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
To find the answer, we have to know about the rules followed by drawing ray-diagram.
<h3>What are the rules obeyed by light rays?</h3>
- If the incident ray is parallel to the principal axis, the refracted ray will pass through the opposite side's focus.
- The refracted ray becomes parallel to the major axis if the incident ray passes through the focus.
- The refracted ray follows the same path if the incident light passes through the center of the curve.
Thus, we can conclude that, when light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
Learn more about refraction by a lens here:
brainly.com/question/13095658
#SPJ1