1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
3 years ago
6

What's a Delphinus Delphis niche

Physics
1 answer:
enyata [817]3 years ago
3 0

Answer:

Delphinus Delphis is a black and white dolphin that leaps high out of the water

Explanation:

Can I get brainliest? plzzz

You might be interested in
A box is dropped onto a conveyor belt moving at 3.2 m/s. If the coefficient of friction between the box and the belt is 0.28, ho
Lemur [1.5K]

Answer:

t = 1.16 s.

Explanation:

Given,

speed of conveyor belt, v = 3.2 m/s

coefficient of friction,f = 0.28

Using newton second law

f = ma

and we also know that frictional force

f = μ N

f = μ m g

equating both the force equation

a = μ g

a = 0.28 x 9.81

a = 2.75 m/s²

Using Kinematic equation

v = u + at

3.2 = 0 + 2.75 x t

t = 1.16 s.

Time taken by the box to move without slipping is 1.16 s.

6 0
3 years ago
A projectile is launched horizontally from a height of 8.0 m. The projectile travels 6.5 m before hitting the ground.
Effectus [21]
Time it takes the projectile to hit the ground after being thrown up:

√h/1/2a

√8/(.5)(9.81)

√8/4.905

√1.630988787

= 1.277101714

= 1. 28

hope this helps :)
7 0
3 years ago
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
If a car increases its velocity from zero to 60 m/s in 10 seconds, its acceleration is
andrezito [222]
We know that a=vf_vi/t equals equation "a" . Where a is the acceleration of the body , vf is the final velocity , vi is the initial velocity and t is equal to time . Since vi equals o m/s , vf equals to 60 m/s and t equals 10 s. Put in equation "a". a=60-0/10 =6m/s2
5 0
3 years ago
What is the right way to sleep
nignag [31]

Answer:

by lying down on a nice and soft quilted matress

5 0
3 years ago
Read 2 more answers
Other questions:
  • Science and technology are interdependent. Advances in one lead to advances in the other.Give an example of this phenomenon.
    11·1 answer
  • State the average value of acceleration due to gravity
    8·1 answer
  • Which process is represented by the PV diagram?
    11·1 answer
  • The bending of waves as they pass between media is called .?
    5·2 answers
  • Currents in the ocean are caused by differences in water density. Colder, denser water tends to
    9·2 answers
  • Moving 2.0 coulombs of charge a distance of 6.0 meters from point A to point B within an electric field requires a 5.0-newton fo
    10·1 answer
  • If mechanical energy is conserved in a system the energy at any point in time can be in the form of
    11·1 answer
  • I WILL MARK YOU THE BRAINLIEST NO LINKS
    13·1 answer
  • Fill in the blanks about Newton’s First Law of Motion:
    8·1 answer
  • Differentiate between concave and convex lens. Write your own answer
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!