Well if its a solid that your heating up then it would closely resemble a liquid and a gas. would be able to give a better answer if you provided more information
Answer:
The speed of transverse waves in this string is 519.61 m/s.
Explanation:
Given that,
Mass per unit length = 5.00 g/m
Tension = 1350 N
We need to calculate the speed of transverse waves in this string
Using formula of speed of the transverse waves

Where,
= mass per unit length
T = tension
Put the value into the formula


Hence, The speed of transverse waves in this string is 519.61 m/s.
Answer:
Speed = 0.00392 m/s
Explanation:
Solution:
Frequency of the radio = 85 MHz
If we have the frequency, we can calculate the wavelength of the radio wave.
As we know,
Frequency = speed of light/wavelength
wavelength = c/f
c = speed of light = 3 x
m/s
So,
Wavelength = 3 x
m/s / 85 x
Hz
Wavelength = 3.5294 m
Man gets disturbed reception at t = 15 min
t = 15 x 60 = 900 s
t = 900 s
Speed = distance/time
Here, distance is wavelength. So,
Speed = 3.5294 m / 900 s
Speed = 0.00392 m/s
Hence, the man's car is going with speed of 0.00392 m/s
Answer:
The correct answer is "64 J".
Explanation:
The given values are:
Mass,
m = 52 kg
Velocity,
v = 6 m/s
Mechanical energy,
= 1000 J
Now,
The gravitational potential energy will be:
⇒ 




Its b i belive
because it the only thing i saw on the list that conduts