Answer:
a) HNO3
b) 26.8g (3 s.f.)
c) 1.29g (3 s.f.)
Please see the attached pictures for full solution.
To balance an equation, ensure that the number of atoms for each element is the same on both sides.
Answer:
I believe it's A. to reduce air bubbles. Tbh, it's been a while
Answer:
4.81 moles
Explanation:
The total pressure of the gas = Pressure at which gauge reads zero + pressure read by it.
Pressure at which gauge reads zero = 14.7 psi
Pressure read by the gauge = 988 psi
Total pressure = 14.7 + 988 psi = 1002.7 psi
Also, P (psi) = P (atm) / 14.696
Pressure = 1002.7 / 14.696 = 68.2297 atm
Temperature = 25 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (25 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
68.2297 atm × 1.5 L = n × 0.0821 L.atm/K.mol × 298.15 K
⇒n = 4.81 moles
Answer: fat show the first half and a lot of people in a row in this rr
Answer:
Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is expressed in moles and multiplied by the molar mass of each to give the mass of each reactant per mole of reaction. The mass ratios can be calculated by dividing each by the total in the whole reaction.
Explanation: Stoichiometry is the field of chemistry that is concerned with the relative quantities of reactants and products in chemical reactions. For any balanced chemical reaction, whole numbers (coefficients) are used to show the quantities (generally in moles ) of both the reactants and products.