you have to show us the rest of it because we have no idea what your looking at. I'm sorry
Answer:
The new partial pressures after equilibrium is reestablished:
Explanation:
At equilibrium before adding chlorine gas:
Partial pressure of the
Partial pressure of the
Partial pressure of the
The expression of an equilibrium constant is given by :
At equilibrium after adding chlorine gas:
Partial pressure of the
Partial pressure of the
Partial pressure of the
Total pressure of the system = P = 263.0 Torr
At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr
Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:
Answer:
The volume is increased.
Explanation:
According to <em>Charles' Law</em>, " <em>at constant pressure the volume and temperature of the gas are directly proportional to each other</em>". Mathematically this law is presented as;
V₁ / T₁ = V₂ / T₂ -----(1)
In statement the data given is,
T₁ = 10 °C = 283.15 K ∴ K = 273.15 + °C
T₂ = 20 °C = 293.15 K
So, it is clear that the temperature is being increased hence, we will find an increase in volume. Let us assume that the starting volume is 100 L, so,
V₁ = 100 L
V₂ = Unknown
Now, we will arrange equation 1 for V₂ as,
V₂ = V₁ × T₂ / T₁
Putting values,
V₂ = 100 L × 293.15 K / 283.15 K
V₂ = 103.52 L
Hence, it is proved that by increasing temperature from 10 °C to 20 °C resulted in the increase of Volume from 100 L to 103.52 L.
The answer should be...99.318!