Answer: magnitude of the instantaneous angular velocity
Explanation:
Instantaneous angular speed is refered to as the magnitude of the instantaneous angular velocity. We should note that the instantaneous angular velocity is the rate that has to do with the rotation of an object in circular path.
The sun’s gravitational attraction and the planet’s inertia keeps planets moving is circular orbits.
Explanation:
The planets in the Solar System move around the Sun in a circular orbit. This motion can be explained as a combination of two effects:
1) The gravitational attraction of the Sun. The Sun exerts a force of gravitational attraction on every planet. This force is directed towards the Sun, and its magnitude is

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the planet
r is the distance between the Sun and the planet
This force acts as centripetal force, continuously "pulling" the planet towards the centre of its circular orbit.
2) The inertia of the planet. In fact, according to Newton's first law, an object in motion at constant velocity will continue moving at its velocity, unless acted upon an external unbalanced force. Therefore, the planet tends to continue its motion in a straight line (tangential to the circular orbit), however it turns in a circle due to the presence of the gravitational attraction of the Sun.
Learn more about gravity:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly
Answer:
Mình cũng không biết làm bạn ơi =)))
Explanation:
The decimal point is placed after two digits starting from the end. For each decimal place, we can write the number divided by 100.
21.12 can be written as
.
Divide the numerator and denominator by 2:

The numerator and denominator can be divided by 2 again:

There is no other common factor between numerator and denominator other than 1. Hence, it is the reduced form.
The conservation of energy always holds true even when not clearly observable in machines that are less than 100% efficient. More often than not a machine will suffer energy losses (e.g. consider for a cooling fan: friction between the rotating blades, drag resistance in the air the fan is pushing around, resistance in the wire, and heat radiating/conducting away from the circuitry).