Answer:

Explanation:
According to the free body diagram, in this case, we have:

Recall that the force of friction is given by:

Replacing and solving for the coefficient of kinetic friction:

We have an uniformly accelerated motion. Thus, the acceleration is defined as:

Finally, we calculate
:

Answer:
Rotational kinetic energy = 0.099 J
Translational kinetic energy = 200 J
The moment of inertia of a solid sphere is
.
Explanation:
Rotational kinetic energy is given by

where <em>I</em> is the moment of inertia and <em>ω</em> is the angular speed.
For a solid sphere,

where <em>m</em> is its mass and <em>r</em> is its radius.
From the question,
<em>ω</em> = 49 rad/s
<em>m</em> = 0.15 kg
<em>r</em> = 3.7 cm = 0.037 m


Translational kinetic energy is given by

where <em>v</em> is the linear speed.

The meat in the freezer is frozen.
Everything else in the freezer is frozen too.
Nothing in the refrigerator is frozen.
The freezer is colder than the refrigerator. <span>
Mildred takes a pound of frozen hamburger meat out of the freezer
and puts it into the refrigerator. The meat is colder than anything
else that's in there.
Heat flows from the air in the refrigerator into the frozen hamburger (C)
and warms up the meat. When the temperature of the meat warms up
to the temperature of the air in the refrigerator, the heat stops flowing.</span>
Wind is caused by differences in the atmospheric pressure. When a difference in atmospheric pressure exists, air moves from the higher to the lower pressure area, resulting in winds of various speeds. On a rotating planet, air will also be deflected by the Coriolis effect, except exactly on the equator.
Answer:
i cant even see that no one can i will answer it if u can make it bigger
Explanation: eyes