Answer:
(i) Oxidizing Agent: NO2 / Reducing Agent NH3-
(ii) Oxidizing Agent AgNO3 / Reducing Agent Zn
Explanation:
(i) 8NH3( g) + 6NO2( g) => 7N2( g) + 12H2O( l)
In this reaction, both two reactants contain nitrogen with a different oxidation number and produce only one product which contains nitrogen with a unique oxidation state. So, nitrogen is oxidized and reduced in the same reaction.
Nitrogen Undergoes a change in oxidation state from 4+ in NO2 to 0 in N2. It is reduced because it gains electrons (decrease its oxidation state). NO2 is the oxidizing agent (electron acceptor).
Nitrogen Changes from an oxidation state of 3- in NH3 to 0 in N2. It is oxidized because it loses electrons (increase its oxidation state). NH3 is the reducing agent (electron donor)
(ii) Zn(s) +AgNO3(aq) => Zn(NO3)2(aq) + Ag(s)
Ag changes oxidation state from 1+ to 0 in Ag(s).
Ag is reduced because it gains electrons and for this reason and AgNO3 is the oxidizing agent (electron acceptor)
Zn Changes from an oxidation state of 0 in Zn(s) to 2+ in Zn(NO3)2. It is oxidized and for this reason Zn is the reducing agent (electron donor).
Balanced equation:
Zn(s) +2AgNO3(aq) => Zn(NO3)2(aq) + 2Ag(s)
I dont know what subject is this
Explanation:
Fertilizers are chemically synthesized plant nutrients.
Nitrogen (N), Phosphorus (P) and Potassium (K) are macronutrients and are required in large amounts by plants. So, farmers use fertilizers in order to supply these nutrients. NPK 15:15:15 , NPK 20:20:20, NPK 15:30:15 are examples of fertilizers used to supply N, P, K to crops.
Answer:
solid
Explanation:
It is called an amorphous solid because it lacks the ordered molecular structure of true solids, and yet its irregular structure is too rigid for it to qualify as a liquid.