Answer:
Air does, in fact, have weight, and here's a simple way you can prove it. You'll need two identical balloons, a string, and a dowel. Attach the uninflated balloons to either end of the dowel. Attach the string to the center of the dowel and then hang it from something.
Explanation:
Answer:
reflected angle - secod mirror = 60°
Explanation:
I attached an image with the solution to this problem below.
In the solution the reflection law, incident angle = reflected angle, is used. Furthermore some trigonometric relation is used.
You can notice in the image that the angle of reflection in the second mirror is 60°
Answer:
The terminal velocity of the diver is 115 m/s = 414 km/hr
Explanation:
At terminal velocity,
Fnet = mg - Fd = 0
Drag force, Fd = cρAv²/2
mg = cρAv²/2
Terminal Velocity of a body falling through a fluid as in a diver falling through air is given by
v = √(2mg/ρcA)
where m = mass of body falling through fluid = 80 kg
g = acceleration due to gravity = 9.8 m/s²
ρ = density fluid, density of air, as obtained from literature = 1.21 kg/m³
c = coefficient of drag friction of diver falling through air, as obtained from literature = 0.7
A = the area of the diver facing the fluid = 0.14 m²
v = √(2mg/ρcA) = √((2 × 80 × 9.8)/(1.21 × 0.7 × 0.14)) = 115 m/s = 115 × (3600/1000) km/hr = 414 km/hr
Use the formular d = v x t
d = 2m
v= 100m/s
t= d / v
= 2 / 100
= 0.02sec
A firecracker before been lit has potential energy in it. It is chemical potential energy which is due to the explosives in it.When it is lit, it gets converted into heat,light and kinetic energy.