31.3m/s
Explanation:
Given parameters:
Mass of rock = 40kg
Height of cliff = 50m
Unknown:
Speed of rock when it hits ground = ?
Solution:
We are going to use the appropriate motion equation to solve this problem
The rock is falling with the aid of gravitational force. The force is causing it to accelerate with an amount of velocity.
Using;
V² = U² + 2gH
V = unknown velocity
U = initial velocity = O
g = acceleration due to gravity = 9.8m/s²
H = height of fall
since the initial velocity of the bodyg is 0
V² = 2gH
V= √2gH = √2 x 9.8 x 50 = 31.3m/s
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly
Answer:
Potential
Explanation:
The water in the bathtub has more potential energy than that in the tea cup because it has a greater number of water molecules.
Mass is a parameter that is very instrumental in determining potential energy.
The potential energy of a body is the energy due to the position of that body.
Potential energy = mass x acceleration due gravity x height
Mass is the amount of matter in a substance. Water in the tub will have more mass and contain a greater number of water molecules there in.
Since potential energy is directly proportional to mass, then, it will have a greater amount of potential energy.
Answer:
Increasing its charge
Increasing the field strength
Explanation:
For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

where
q is the charge
v is the velocity
B is the magnetic field
m is the mass
r is the radius of the orbit
The period of the motion is

Re-arranging for r

And substituting into the previous equation

Solving for T,

So we see that the period is:
- proportional to the charge and the magnetic field
- inversely proportional to the mass and the square of the speed
So the following will increase the period of the particle's motion:
Increasing its charge
Increasing the field strength
We're so good here on Brainly, we can answer it
even WITHOUT seeing the choices.
Time = (displacement) / (magnitude of average velocity) .
The tiny ripples on the soup are not only similar to wind-generated
waves ... they ARE wind-generated waves. This is a big part of the
reason why they bear such an uncanny resemblance.