Answer:
(a)
: reverse reaction is favored.
(b)
: reverse reaction is favored.
(c)
: reverse reaction is favored.
(d)
: forward reaction is favored.
Explanation:
Hello,
(a)
:
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (acetic acid) will tend to have a higher concentration.
(b)
:
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (silver chloride) will tend to have a higher concentration.
(c) 
In this case, since the Ka is lower than 1, we infer the reverse reaction is favored since the reactant (aluminium hydroxide) will tend to have a higher concentration.
(d) 
In this case, since the Ka is greater than 1, we infer the forward reaction is favored since the product (C) will tend to have a higher concentration.
Regards.
Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
Answer:
B. To change from a liquid state to a solid state is called Freezing
Answer:
a) Ka= 7.1 × 10⁻⁴; This is a weak acid because the acid is not completely dissociated in solution.
Explanation:
Step 1: Write the dissociation reaction for nitrous acid
HNO₂(aq) ⇄ H⁺(aq) and NO₂⁻(aq)
Step 2: Calculate the acid dissociation constant
Ka = [H⁺] × [NO₂⁻] / [HNO₂]
Ka = 0.022 × 0.022 / 0.68
Ka = 7.1 × 10⁻⁴
Step 3: Determine the strength of the acid
Since Ka is very small, nitrous acid is a weak acid, not completely dissociated in solution.