Answer:
a) The rotational inertia when it passes through the midpoints of opposite sides and lies in the plane of the square is 16.8 kg m²
b) I = 50.39 kg m²
c) I = 16.8 kg m²
Explanation:
a) Given data:
m = 0.98 kg
a = 4.14 * 4.14
The moment of inertia is:

For 4 particles:

b) Distance from top left mass = x = a/2
Distance from bottom left mass = x = a/2
Distance from top right mass = x = √5 (a/2)
The total moment of inertia is:

c)

The emf is induced in the wire will be 1.56 ×10 ⁻³ V. The induced emf is the product of the magnetic field,velocity and length of the wire.
<h3>What is induced emf?</h3>
Emf is the production of a potential difference in a coil as a result of changes in the magnetic flux passing through it.
When the flux coupling with a conductor or coil changes, electromotive Force, or EMF, is said to be induced.
The given data in the problem is;
B is the magnitude of the magnetic field,= 5.0 ×10⁻⁵ T
V(velocity)=125 M/SEC
L(length)=25 cm=0.25 m
The maximum emf is found as;
E=VBLsin90°
E=125 × 5.0 × 10⁻⁵ ×0.25
E=1.56 ×10 ⁻³ V
Hence, the emf is induced in the wire will be 1.56 ×10 ⁻³ V
To learn more about the induced emf, refer to the link;
brainly.com/question/16764848
#SPJ1
Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds
Let us take east and north as the positive x and y-axes should the motion be plotted in a cartesian plane. Thus, the x value is 45 miles and the y value is 20. The tangent of an angle is equal to the ratio of y to x.
tanθ = y / x
Substituting,
tanθ = 20/45 = 0.44
The value of θ is 23.96°.