1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margaret [11]
2 years ago
7

An ideal transformer has 60 turns in its primary coil and 360 turns in its secondary coil. If the input rms voltage for the 60-t

urn coil is 120 V, what is the output rms voltage of the secondary coil
a. 240 V
b. 720 V
c. 360 V
d. 480 V
e. 20 V
Physics
1 answer:
notka56 [123]2 years ago
7 0

Answer:

720 V

Explanation:

Given that,

The number of turns in primary coil, N₁ = 60

The number of turns in secondary coil, N₂ = 360

The input rms voltage, V₁ = 120 V

We need to find the output rms voltage of the secondary coil . The relation between number of turns in primary coil - secondary coil to the input rms voltage to the output rms voltage is given by :

\dfrac{N_1}{N_2}=\dfrac{V_1}{V_2}\\\\V_2=\dfrac{N_2V_1}{N_2}\\\\V_2=\dfrac{360\times 120}{60}\\\\V_2=720\ V

<h3>So, the output rms voltage of the secondary coil is 720 V. Hence, the correct option is (b).</h3>
You might be interested in
This chemical equation represents the burning of methane, but the equation is incomplete. What is the missing coefficient in bot
kolezko [41]
Your complete chemical equation is CH4+O2=CO3+H2O
8 0
3 years ago
Read 2 more answers
In the diagram of the earth’s interior, which part causes the diffraction of P waves made by earthquakes?
damaskus [11]

Answer:

D

Explanation:

4 0
3 years ago
200-grams of computer chips with a specific heat of 0.3 kJ/kg·K are initially at 25°C. These chips are cooled by placement in 0.
balu736 [363]

Answer:

a. -0.01324 kJ/K,  b.  = 0.03233 kJ/K , c.  = 0.01909, Yes the process is possible

Explanation:

Heat transfer will occur between the chip and the surrounding fluid. Then, finally they will attain a common equilibrium temperature and heat transfer will stop. Now, if we assume that, after heat transfer, chip will attain the temperature of fluid, that is, -34 C,, So , to check whether this is possible

Amount of energy lost by the chip = m . c . (T(i) - T(f))

= 0.2 x 0.3 (25 + 34) = 3.54 KJ

Now, to evaluate the final state of the fluid, after the heat transfer completion,

Energy Gained = m(mew final – mew initial) = m[(μf+ x . μfg) - μf]

Note that heat transfer will change the internal energy of the fluid. Do not consider enthalpy change, as this is not a problem involving fluid flow in and out of the system

M[(μf+ x . μfg) - μf] = m(xμfg)

<u>Energy gained by the fluid will be equal to the energy lost by the chip (No energy loss to the surroundings)</u>

3.54 = 0.1 . X x 203.29

<u>x = 0.1741, which is the dryness fraction of fluid at the final state.</u>

Observe that the total energy lost by the chips is 3.45 kJ and fluid R-134a has got its value of mew fg at -34 C which is = 203.29 kJ/kg

So for 0.1kg of R-134a

0.1 x μfg= <u>20.329 kJ, which is much greater than 3.45 kJ</u>, therefore, it is certain that the state of fluid will be at -34 C only and at the saturation pressure of 69.56 KPa. So the chip will come to attain the temperature of -34 C.  

a. Write the equation for the change of entropy in the chips

ΔSchips = mchips . c . ln(T2/T1), where mc is the mass of chips, c is the specific heat of chips, T2 is the temperature at state 2 and T1 is the temperature at state 1

Substitute mc = 0.2 kg, c = 0.3kJ/kg.K, T1 = 25 + 273, T2 = -34 + 273

delSchips = 0.2 x 0.3 x ln [(-34+273)/ (25+273)]

= -0.01324 kJ/K

There fore the change in entropy of the chips is -0.01324 kJ/K

b. Entropy change of fluid R- 134a

ΔS2 = m[Sfinal – S initial]

= m[Sf + x . Sfg - Sf]

= 0.2 x (0.1741 x 0.92859)

= 0.03233 kJ/K

c. Calculate the total change in the entropy of the entire system

delS = delSchips + delSR -134a

= -0.01324 + 0.03233

= 0.01909

<u>Since the total change in entropy of the entire system is positive that exactly explains that the actual processes are happening in the direction of increase of entropy therefore, the process is possible.</u>

<u />

6 0
3 years ago
Dams are made wider at the bottom than at the top?
malfutka [58]
Yes dams are made wider at the bottom because the pressure of the water pressure is greater there
8 0
3 years ago
A 20-kg child running at 1.4 m/s jumps onto a playground merry-go-round that has mass 180 kg and radius 1.6m. She is moving tang
Dominik [7]

Answer:

ωf = 0.16 rad/s

Explanation:

Moment of inertia of the child = mr² = 20(1.6²) = 51.2 kg•m²

Moment of Inertia of the MGR = ½mr² = ½(180)1.6² = 230.4 kg•m²

(ASSUMING it is a uniform disk)

Initial angular momentum of the child = Iω = I(v/r) = 51.2(1.4/1.6) = 44.8 kg•m²/s

Conservation of angular momentum

44.8 = (51.2 + 230.4)ωf

ωf = 0.15909090...

4 0
3 years ago
Other questions:
  • Paper craft wall hanging how is it ?​
    14·2 answers
  • What is the current of a 10 Ohm resistor attached to a 9 volt battery?
    11·1 answer
  • how does the electric force between two charged particles change if the distance between them is increased by a factor of 3? a.
    10·2 answers
  • You want the current amplitude through a inductor with an inductance of 4.70 mH (part of the circuitry for a radio receiver) to
    5·1 answer
  • An airplane wing is designed to make the air move
    8·1 answer
  • State two (2) examples of osmosis occurring in everyday life
    10·1 answer
  • A man walks 80m to the East and then turns around and walks back (West) a distance of 20m. What is his total distance and displa
    6·1 answer
  • Box A has two moles of gas at a temperature of 400 K. Box B has one mole of gas at a temperature of 800 K. Which of the two gas
    13·1 answer
  • Which statement best describes the main idea of the poem
    6·1 answer
  • A rope is wrapped three and a half times around a cylinder. Determine the range of force T exerted on the free end of the rope f
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!