The kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
<h3>What is Kinetic Energy?</h3>
Kinetic energy is simply a form of energy a particle or object possesses due to its motion.
It is expressed as;
K = (1/2)mv²
Where m is mass of the object and v is its velocity.
Given that;
- For the first case, velocity v = 16m/s
- For the second case, velocity = 8m/s
- Let the mass of the car be m
For the first case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (16m/s)²
K = (1/2) × m × 256m²/s²
K = mass × 128m²/s²
For the second case, kinetic energy of the car will be;
K = (1/2)mv²
K = (1/2) × m × (8m/s)²
K = (1/2) × m × 64m²/s²
K = mass × 32m²/s²
Comparing the kinetic energy of the car with the same mass but different velocity, we can see that the kinetic energy in the first case is 4 times more than the second case.
Hence, option D)It is 4 times greater is the correct answer.
Learn more about kinetic energy here: brainly.com/question/12669551
#SPJ1
Answer:
The articles appearing under "Milestones in Physics" will give an insight into special events or situations that have been decisive for the evolution of Physics
Answer:

where E = electric field intensity
Explanation:
As we know that plastic ball is suspended by a string which makes 30 degree angle with the vertical
So here force due to electrostatic force on the charged ball is in horizontal direction along the direction of electric field
while weight of the ball is vertically downwards
so here we have


since string makes 30 degree angle with the vertical so we will have





where E = electric field intensity
When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand points in the direction that the charge is moving? The answer is <span>thumb.
</span>One way to remember this is that there is one velocity, represented accordingly by the thumb. There are many field lines, represented accordingly by the fingers. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge. Because the force is always perpendicular to the velocity vector, a pure magnetic field will not accelerate a charged particle in a single direction, however will produce circular or helical motion (a concept explored in more detail in future sections). It is important to note that magnetic field will not exert a force on a static electric charge. These two observations are in keeping with the rule that <span>magnetic fields do no </span>work<span>.</span>
1. Safety equipment is available
2. Person attempting the task has some general knowledge about wiring
3. Not All Cable is Color-Coded
Cable-sheath color coding started in 2001 and is still voluntary. If you have older wiring, don’t assume it complies with the current color coding. However, most manufacturers now follow the standard color code.
4. Stranded wire is more flexible than solid. If you’re pulling wire through conduit, stranded wire makes it easier to get around corners and bends in the conduit. However, if the situation requires pushing wires through conduit, you’ll want to use solid wire.