Answer:
The percentage composition of each element in H2O2 is 5.88% H and 94.12% O (Option D).
Explanation:
Step 1: Data given
Molar mass of H = 1.0 g/mol
Molar mass of O = 16 g/mol
Molar mass of H2O2 = 2*1.0 + 2*16 = 34.0 g/mol
Step 2: Calculate % hydrogen
% Hydrogen = ((2*1.0) / 34.0) * 100 %
% hydrogen = 5.88 %
Step 3: Calculate % oxygen
% Oxygen = ((2*16)/34)
% oxygen = 94.12 %
We can control this by the following equation
100 % - 5.88 % = 94.12 %
The percentage composition of each element in H2O2 is 5.88% H and 94.12% O (Option D).
Answer:
Percent Yield = 94.237%
Explanation:
CO = Carbon Dioxide = Molar Mass 28g/mol
C = Carbon = 12g/mol
O = Oxygen = 16g/mol
Theoretical yield = 93.7 grams
Actual yield = 88.3 grams
Percent yield =
(actual yield
/theoretical yield
)x100
Percent Yield = (88.3/93.7)x100
Percent Yield = 94.237%
Answer:
An increase
Explanation:
The strong southerly winds affect the vapor pressure by increasing it .
When the vapor pressure increases it means an increase in temperature and more evaporation occurs.
A decrease in the vapor pressure means a reduction in temperature with less amount of evaporation being involved
Answer:

Explanation:
Hello,
In this case, since the density is defined as the ratio between the mass and the volume as shown below:

We can compute the density of water for the given 43 g that occupy the volume of 43 mL:

Regards.
Answer:
The molar mass of carbon
Explanation:
Before the mass (in grams) of two moles of carbon can be determined, <u>the molar mass of the element would be needed.</u>
<em>This is because the number of mole of an element is the ratio of its mass and the molar mass</em>. That is,
number of mole = mass/molar mass
Hence, the mass of elements can be obtained by making it the subject of the formular;
mass = number of mole x molar mass
<em>Therefore, the molar mass of carbon would be needed before the mass of 2 moles of the element can be determined.</em>