D - density: 13,534 g/ml
m - mass: 10g
V - volume: ??
_____________
d = m/V
V = m/d
V = 10/13,534
V = 0,7389 ml
:•)
A high concentration of water has <u>fewer</u> dissolved particles than a low water concentration.
Most cell membranes are not as easily permeable to many dissolved compounds as water is. There is a quick and constant flow of water. From one area with less dissolved matter to another with more, water transports NET. Or, if you want, from an area with a lot of water to one with little water. The terms isotonic, hypotonic, and hypertonic refer to the concentration of dissolved material. In a medium, such as the extracellular fluid, every distinct material has a concentration gradient that is unique from the gradients of other substances. Every substance will diffuse in line with that gradient as well.
Learn more about Concentration here-
brainly.com/question/10725862
#SPJ4
A) GPS monitoring and satellite imagery of crustal movements
Explanation:
The most recent evidence supporting the theory of plate tectonics is the use of GPS monitoring and satellite imagery of crustal movements.
GPS denotes Global Positioning Systems.
Satellite imagery is a recent advancement in the study of moving plates.
- The global positioning system uses the position of a system of satellites in space to delineate positions on earth.
- It works on the principles of triangulation and this helps to fix positions of objects on the earth surface.
- With this, the change in position of the plates can be recorded by known fixed positions of objects.
- Satellite imagery helps to map changes in terrain with time.
- Images can be correlated through time and the shift in terrains delineated.
learn more:
Wegener brainly.com/question/5002949
#learnwithBrainly
Answer : The energy removed must be, 29.4 kJ
Explanation :
The process involved in this problem are :

The expression used will be:
![Q=[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{fusion}]+[m\times c_{p,s}\times (T_{final}-T_{initial})]](https://tex.z-dn.net/?f=Q%3D%5Bm%5Ctimes%20c_%7Bp%2Cl%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D%2B%5Bm%5Ctimes%20%5CDelta%20H_%7Bfusion%7D%5D%2B%5Bm%5Ctimes%20c_%7Bp%2Cs%7D%5Ctimes%20%28T_%7Bfinal%7D-T_%7Binitial%7D%29%5D)
where,
= heat released for the reaction = ?
m = mass of benzene = 94.4 g
= specific heat of solid benzene = 
= specific heat of liquid benzene = 
= enthalpy change for fusion = 
Now put all the given values in the above expression, we get:
![Q=[94.4g\times 1.73J/g.K\times (279-322)K]+[94.4g\times -125.6J/g]+[94.4g\times 1.51J/g.K\times (205-279)K]](https://tex.z-dn.net/?f=Q%3D%5B94.4g%5Ctimes%201.73J%2Fg.K%5Ctimes%20%28279-322%29K%5D%2B%5B94.4g%5Ctimes%20-125.6J%2Fg%5D%2B%5B94.4g%5Ctimes%201.51J%2Fg.K%5Ctimes%20%28205-279%29K%5D)

Negative sign indicates that the heat is removed from the system.
Therefore, the energy removed must be, 29.4 kJ