Given :
2NOBr(g) - -> 2NO(g) + Br2(g)
Initial pressure of NOBr , 1 atm .
At equilibrium, the partial pressure of NOBr is 0.82 atm.
To Find :
The equilibrium constant for the reaction .
Solution :
2NOBr(g) - -> 2NO(g) + Br2(g)
t=0 s 1 atm 0 0
1( 1-2x) 2x x
So ,

At equilibrium :
![K_{eq}=\dfrac{[NO]^2[br_2]}{[NOBr]^2}\\\\K_{eq}=\dfrac{0.18^2\times 0.9}{0.82^2}\\\\K_{eq}=0.043\ atm](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cdfrac%7B%5BNO%5D%5E2%5Bbr_2%5D%7D%7B%5BNOBr%5D%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D%5Cdfrac%7B0.18%5E2%5Ctimes%200.9%7D%7B0.82%5E2%7D%5C%5C%5C%5CK_%7Beq%7D%3D0.043%5C%20atm)
Hence , this is the required solution .
Answer:
Explanation:
The relation between equilibrium constant and Ecell is given below .
E⁰cell = (RT / nF ) lnK , F is faraday constant T is 273 + 25 = 298 K
E⁰cell = 1.46 - 1.21 = .25 V
n = 2
Putting the values
.25 = (8.314 x 298 lnK) / (2 x 96485 )
lnK = 19.47
K = 2.85 x 10⁸
2 )
Change in free energy Δ G
Δ G ⁰ = nE⁰ F
n = 4
E⁰ = .4 + .83 = 1.23 V
Δ G ⁰= 4 x 1.23 x 96485
= 474706 J / mol
3 )
E⁰cell = (RT / nF ) lnK
n = 2
1.78 = 8.314 x 298 lnK / 2 x 96485
lnK = 138.638
K = 1.62 x 10⁶⁰
Respiration. That is the process.