Answer:
So, the correct answer is <em><u>the strong nuclear force</u></em>. It actually pulls together nuetrons and protons that are in the nucleus. At very tiny distances only, like those inside the nucleus, so, this strong force succeded in dealing with the electromagnetic force, and it basically stops the electrical repulsion of protons from blowing apart the nucleus.
<u><em>Mark as brainlies please, I need a few more :D</em></u>
A wall uses diffuse reflection while a mirror uses specular reflection. For example, when parallel light rays enter a mirror, they remain parallel when exiting the mirror, allowing you to see a reflection of the light rays. On the contrary, when incident light rays enter a wall which is painted, the rays scatter, not allowing you to see anything but a painted wall.
m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.