First speed = 20km/h
Time = 3 hours
Distance = 3×20
<h3> = <u>60 km</u></h3>
Second speed = 30km/h
Time = 4 hours
Distance = 4×30
<h3> = <u>120 km</u></h3>
Total distance = 60+120 = <u>180km</u>
Total time = 3+4 =<u> 7 hours</u>
Average speed = 180/7
<h3> = <u>25.71</u><u> </u><u>km</u><u>/</u><u>h</u></h3>
Hope this will help...
Waves carry energy from one place to another. Because waves carry energy, some waves are used for communication, eg radio and television waves and mobile telephone signals. ... Some types of waves need to be transmitted through matter, either a solid, liquid or a gas. For example, water waves have to travel in water.
What fraction of stipend triangle is a shaded triangle? What fraction of the spotted triangle is a shaded triangle? Use >,
Answer:
An investigation is made to determine the performance of simple thin airfoils in the slightly supersonic flow region with the aid of the nonlinear transonic theory first developed by von Kármán[1]. Expressions for the pressure coefficient across an oblique shock and a Prandtl-Meyer expansion are developed in terms of a transonic similarity parameter. Aerodynamic coefficients are calculated in similarity form for the flat plate and asymmetric wedge airfoils, and curves are plotted. Sample curves for a flat plate and a specific asymmetric wedge are plotted on the usual coordinate grid of Cl, Cd,andCmc/4versus angle of attack and Cl versus Mach Number to illustrate the apparent features of nonlinear flow.
Explanation:
Answer:
3.49 seconds
3.75 seconds
-43200 ft/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Time the parachutist falls without friction is 3.19 seconds

Speed of the parachutist when he opens the parachute 31.32 m/s. Now, this will be considered as the initial velocity

So, time the parachutist stayed in the air was 3.19+0.3 = 3.49 seconds


Now the initial velocity of the last half height will be the final velocity of the first half height.

Since the height are equal


Time taken to fall the first half is 2.65 seconds
Total time taken to fall is 2.65+1.1 = 3.75 seconds.
When an object is thrown with a velocity upwards then the velocity of the object at the point to where it was thrown becomes equal to the initial velocity.

Magnitude of acceleration is -43200 ft/s²