<span>Depth = 5.0 Ă— 10^2 m
Density of sea water = 1.025 x 10^3
Pd = Po + pgh
Atmospheric pressure is standard Patm = 1.01325 x 10^5 Pa
Since the normal pressure is retained in the hull, no need to bother about Po
Pd = pgh = 1.025 x 10^3 x 9.8 x 5.0 x 10^2 = 50.225 x 10^5
So now Pd / Patm = 50.225 x 10^5 / 1.01325 x 10^5 = 49.56
So it is 49.56 times larger.</span>
They would most likely use statistics on the increase/decrease in population from previous decades and centuries. In addition to these statistics, they could use the birth and death rate and ultimately predict the increase within these next 30 years. They must also take climate change and other environmental factors into consideration when formulating such a bold prediction.
I think it is equal for your question
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
There is a positive correlation between luminosity and mass of stars, meaning the more luminous a star is, the more massive it is likely to be as well. Given this, the masses of the stars should be in descending order of brightness.
Star 1 is the most luminous, so it should be heaviest, and the luminosity descends to Star 4.
Option B is the only chart that conforms to this, so it is the answer.
Answer is B