When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.
The first one. The E and B chatacteristic are perpendicular to eachother. The direction of the wave can be found by the right hand rule.
PM me for full answer, please. If it's not too late.
Answer:
4.9 m/s²
Explanation:
Draw a free body diagram. There are two forces on the object:
Weight force mg pulling straight down,
and normal force N pushing perpendicular to the plane.
Sum the forces in the parallel direction.
∑F = ma
mg sin θ = ma
a = g sin θ
a = (9.8 m/s²) (sin 30°)
a = 4.9 m/s²
Answer:
Explanation:
λ = wave length = 632 x 10⁻⁹
slit width a = 2 x 10⁻³ m
angular separation of central maxima
= 2 x λ /a
= 2 x 632 x 10⁻⁹ / 2 x 10⁻³
= 632 x 10⁻⁶ rad
width in m of light spot.
= 632 x 10⁻⁶ x 376000 km
= 237.632 km