Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
The force that prevents motion when the surfaces of two objects come into contact is known as friction. Friction decreases a machine's mechanical advantage, or, to put it another way, reduces the output to input ratio.
<h3>How can I figure out the frictional force?</h3>
The resistive force of friction (Fr) divided by the normal or perpendicular force (N) pushing the objects together yields the coefficient of friction (fr), which is a numerical value.
The formula fr = Fr/N serves as a representation of it.
Therefore, 100N of force is needed to move an item with a mass of 50 kg.
It will accelerate by 10 m/s2.
If a substance's mass does not change over time, friction cannot affect it. Instead, friction can be affected in a variety of ways by an object's mass.
To Learn more About Friction, Refer:
brainly.com/question/24338873
#SPJ13
Answer:
I think it has to do something with their ionizations... not entirely sure though.
Explanation:
Answer:
<em>a) below the observed position</em>
<em>b) directly at the observed position</em>
<em></em>
Explanation:
If I'm standing on the bank of a stream, and I wish to spear a fish swimming in the water out in front of me, I would aim below the observed fish to make a direct hit. This is because the phenomenon of refraction of light in water causes the light coming from the fish is refract away from the normal as it passes into the air and into my eyes.
If I'm to zap the fish with a taser, I would aim directly at the observed fish because the laser (a form of concentrated light waves) will refract into the water, taking the same path the light from the fish took to get to my eyes.