Answer: 20.4 miles
Explanation:
Here we need to use the equation:
Velocity = Distance/Time.
Initially we have that he can travel 30 miles in 2 hours, so the velocity is:
V = 30mi/2h = 15mph
Now, we reduce the velocity by 3 mph, so the new velocity is 15mph - 3 mph = 12mph.
Now we want to know the distance traveled in 1.7 hours with this velocity, this is.
Velocity*Time = Distance
12mi/h*1.7h = 20.4 miles
Answer: Search Results
Featured snippet from the web
Answer: Surface waves can have characteristics of both longitudinal and transverse waves in the following way; The motion of the surface waves is up and down which is perpendicular to the direction of the wave. This is similar to the motion of transverse waves whereas the the motion of longitudinal.
Explanation:
I think that the people who are most likely to benefit from lithium is people with bipolar disorder. Because there have been tests that recently show that they use it for patients with that disease.
Answer: coefficient of static friction
= 0.31
Explanation: Since they negotiate the curve without skidding, the frictional force (F1) equals the centripetal force (F2).
F1= uN
F2 = M*(v²/r)
M is the combined mass 450kg
V is the velocity 18m/s
r is the radius 106m
N is the normal reaction 4410N
u is the coefficient of static friction
Making u subject of the formula we have that,
u = {450*(18²/106)} /4410
=1375.47/4410
=0.31
NOTE: coefficient of friction is dimensionless. It as no Unit.
It would have to be 36,719 Km high in order to be to be in geosynchronous orbit.
To find the answer, we need to know about the third law of Kepler.
<h3>What's the Kepler's third law?</h3>
- It states that the square of the time period of orbiting planet or satellite is directly proportional to the cube of the radius of the orbit.
- Mathematically, T²∝a³
<h3>What's the radius of geosynchronous orbit, if the time period and altitude of ISS are 90 minutes and 409 km respectively?</h3>
- The time period of geosynchronous orbit is 24 hours or 1440 minutes.
- As the Earth's radius is 6371 Km, so radius of the ISS orbit= 6371km + 409 km = 6780km.
- If T1 and T2 are time period of geosynchronous orbit and ISS orbit respectively, a1 and a2 are radius of geosynchronous orbit and ISS orbit, as per third law of Kepler, (T1/T2)² = (a1/a2)³
- a1= (T1/T2)⅔×a2
= (1440/90)⅔×6780
= 43,090 km
- Altitude of geosynchronous orbit = 43,090 - 6371= 36,719 km
Thus, we can conclude that the altitude of geosynchronous orbit is 36,719km.
Learn more about the Kepler's third law here:
brainly.com/question/16705471
#SPJ4