The answer is: An electromagnet is a (Solenoid) with a (metal) core.
Plz mark brainliest and be safe out there
Answer: 0.235
Explanation:
Given data.
M1 = 0.91 Kg
M2 = 2kg
L = 0.95m
N = 35rpm
t = 10.44secs
Solution:
• we first solve for the center of gravity
•we calculate our moment of inertia
• we calculate the angular velocity
• we solve for our torque ( t )
Answer:
If using radians: 16.2
If using degrees: 12.8
Don't forget your units
Explanation:
I assume that x represents the velocity?
If so, then just substitute the value t and solve
Answer:
Explanation:
The equation for this is
f = μ
where f is the frictional force the block needs to overcome, μ is the coefficient of static friction, and
(that means that the normal force is the same as the weight of the block which has an equation of weight = mass times the pull of gravity). Filling in:
1.09 = μ(.413)(9.8) and
μ =
so
μ = .27
Answer:
Explanation:
This is going to sound like an absurd answer, but sometimes physics can be a little strange.
This answer is weird because of the definition of displacement. It means the distance from the starting point to the ending point, disregarding what happened in between. The point is that the astronaut is at the starting point of his orbit. By definition the starting and ending points are the same. His displacement is 0.
So the answer is you have the greater displacement when you walked one way to school. The starting point and the ending point are different. You have gone further.
However just to make things a little nasty, when you walk home again, your displacement will be the same as the astronaut's -- 0 meters because you will be right back where you started from.