Answer:
touching
Explanation:
The backrest of the seat should be tilted back ever so slightly, and when turning the steering wheel your shoulders should remain in contact with the seat – rather than hunched forward.
Answer:
Alice is correct.
The loop are dependent.
Explanation:
for(i = 1; i <= N; i = (i*2)+17 )
for(k = i+1; k <= i+N; k = k+1) // notice i in i+1 and i+N
printf("B")
This is a nested for-loop.
After the first for-loop opening, there is no block of statement to be executed rather a for-loop is called again. And the second for-loop uses the value of i from the first for-loop. The value of N is both called from outside the loop.
So, the second for-loop depend on the first for loop to get the value of i. For clarity purpose, code indentation or use of curly brace is advised.
Answer:
A fluid flowing along a flat plate will stick to it at the point of contact
Explanation:
and this is known as the no-slip condition. ... This is the precise reason why shear stress in a fluid can also be interpreted as the flux of momentum.
Answer:
Both come from the sun
Both are reusable sources
and both don't cause pollution
Explanation:
Answer:
a)
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b) 3.1 secs
Explanation:
a) Determine the normal times in TMUs for these motion elements
1) R16C ; Tn = 17 TMU
2) G4A ; Tn = 7.3 TMU
3) M10B5 ; Tn = 15.1 TMU
4) RL1 ; Tn = 2 TMU
5) R14B ; Tn = 14.4 TMU
6) G1B ; Tn = 3.5 TMU
7) M8C3 ; Tn = 14.7 TMU
8) P1NSE ; Tn = 10.4 TMU
9) RL1 ; Tn = 2 TMU
b ) Determine the total time for this work element in seconds
first we have to determine the total TMU = ∑ TMU = 86.4 TMU
note ; 1 TMU = 0.036 seconds
hence the total time for the work in seconds = 86.4 * 0.036 = 3.1 seconds