When object travels with uniform velocity, no force acts on it. hence , yes.
Answer:
The magnitude of the average force on the wall during the collision is 6 N.
Explanation:
Given;
mass of snowball, m = 120 g = 0.12 kg
velocity of the snowball, v = 7.5 m/s
duration of the collision between the snowball and the wall, t = 0.15 s
Magnitude of the average force can be calculated by applying Newton's second law of motion;
F = ma
where;
a is acceleration = v / t
a = 7.5 / 0.15
a = 50 m/s²
F = ma
F = 0.12 x 50
F = 6 N
Therefore, the magnitude of the average force on the wall during the collision is 6 N.
0.004 of something added to 0.12508 of the same thing
adds up to 0.12908 of it.
The thing could be a glass of water, a sheet of paper,
a pound of ground beef, a gallon of gas, or a snowball.
In this problem, it just happens to be a dm.
Answer:
Potential energy of spring = 24 Joules.
Explanation:
Given the following data;
Spring constant = 85N/m
Extension, e = 0.75m
Mass = 25kg
To find the potential energy of a spring
Potential energy of a spring is given by the formula;
P.E = ½ke²
Substituting into the equation, we have
P.E = ½*85*0.75²
P.E = 42.5 * 0.5625
P.E = 23.91 ≈ 24 Joules
P.E = 24 Joules
The electromagnetic spectrum includes a continuous spectrum of wavelengths that include:
Radio waves, microwaves, infrared light, visible, ultraviolet, X-rays, gamma rays
The wavelength decreases from radio waves to gamma rays, whereas the energy increases along the same direction.
In the given example, radio waves have a lower energy and higher wavelength than visible light. The latter can be perceived by the human eye, whereas radio waves are not visible to the human eye.
1) They have colors = visible light
2) They can travel in a vacuum = both
3) They have energy = both
4) They’re used to learn about dust and gas clouds = radio waves
5) They’re used to find the temperature of stars = visible light
6)They’re invisible = radio waves