If you have no way to accurately measure all of the object's bumps and dimples, then the only way to measure its volume is by means of fluid displacement.
-- Put some water into a graduated (marked) container, read the amount of water, drop the object into the container, and read the new volume in the container. The volume of the object is the difference between the two readings.
-- Alternatively, stand an unmarked container in a large pan, and fill it to the brim. Slowly slowly lower the object into the unmarked container, while the pan catches the water that overflows from it. When the object is completely down in the container, carefully remove the container from the pan, and measure the volume of the water in the pan. It's equal to the volume of the object.
They are halogen elements, or nonmetallic elements in the same GROUP, specifically group 17
Answer:
55
Explanation:
I hope this answer help u
Hey there!
The answer would be B. The sound moves from air to water.
Sound travels through different mediums. It goes fastest in solids, a little slower in liquids, and slowest in air. Sound is a very fast wave, but remember that mediums can differ that. In a vacuum space, there is no sound at all. (ex. outer space)
Hope this helps !
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:

where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:

where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:
