Answer:


Explanation:
Given that
Q= 5 L/min
1 L = 10⁻³ m³/s
1 min = 60 s
Q=0.083 x 10⁻³ m³/s
d= 6 μm
v= 1 mm/s
So the discharge flow through one tube
q = A v


A=2.8 x 10⁻¹¹ m²
v= 1 x 10⁻³ m/s
q= 2.8 x 10⁻¹⁴ m³/s
Lets take total number of tube is n
Q= n q
n=Q/q


Surface area A
A= π d L


Answer:
4.981 MeV
Explanation:
The quantity of energy Q can be calculated using the formula
Q = (mass before - mass after) × c²
Atomic Mass of thorium = 232.038054 u, atomic of Radium = 228.0301069 u and mass of Helium = 4.00260. The difference of atomic number and atomic mass between the thorium and radium ( 232 - 228) and ( 90 - 88) show α particle was emitted.
1 u = 931.494 Mev/c²
Q = (mass before - mass after) × c²
Q = ( mass of thorium - ( mass of Radium + mass of Helium ) )× c²
Q = 232.038054 u - ( 228.0301069 + 4.00260) × c²
Q = 0.0053471 u × c²
replace 1 u = 931.494 MeV/ c²
Q = 0.0053471 × c² × (931.494 MeV / c²)
cancel c² from the equation
Q = 0.0053471 × 931.494 MeV = 4.981 MeV
The perfect elastic Collision ball will hit the door first because the clay is heavier and will take more time
Out of the given options, weight is influenced by mass and gravity
Answer: Option A
<u>Explanation:
</u>
The object's mass is defined as the quantity of a matter with which the object is formed. It can change its state of matter but the quantity will remain the same. However, the weight is defined as how much force gravity exerts on the object's mass to pull it.
The mass is always same irrespective the location but the weight may vary from one place to the other while talking for the bigger picture. For example, the object's weight may be 60 kg on Earth but when it is measured on the moon, it will be lesser.
The weight of an object generally has nothing doing with the volume and it doesn't depend solely on the gravitational pull. The mass plays a crucial role.
