since the concentration of Carbon Dioxide will increase, it would make Q > K, cause equilibrium to shift in the direction with less moles of gas to alleviate the extra pressure. In this case, the reaction will shift left because there are fewer moles of gas present.
The electromagnetic force is attractive for unlike charges and repulsive for like charges
Answer:
CHO
Explanation:
Carbon = 41%, Hydrogen = 4.58%, oxygen = 54.6%
Step 1:
Divide through by their respective relative atomic masses
41/ 12, 4.58/1, 54.6/16
3.41 4.58 3.41
Step 2:
Divide by the lowest ratio:
3.41/3.41, 4.58/3.41, 3.41/3.41
1, 1, 1
Hence the empirical formula is CHO
Answer:
see calculations in explanation
Explanation:
percent = part/total x 100%
part = ∑ atomic mass of element
- hydrogen = 1.008 amu (atomic mass units)
- carbon = 12.011 amu
- nitrogen = 14.007 amu
total = ∑ molecular mass of compound
= H amu + C amu + Namu
= 1.008 amu + 12.011 amu + 14.007 amu
= 27.026 amu
%H = (1.008amu/27.026amu)100% = 3.730%
%C = (12.011amu/27.026amu)100% = 44.442%
%N = (14.007amu/27.026amu)100% = 51.827%
Check results ∑%values = 100%
3.730% + 44.442% + 51.827% = 99.999% ≅ 100%
The most dramatic astronomical development of the century thus far is the detection of gravitational waves from merging black holes at a distance of 400 Mpc, during the first science run of the advanced Laser Interferometer Gravitational-Wave Observatory.
The telescope was also very important. Galileo Galilei was the first person to use a telescope to look at celestial bodies (though he did not invent the telescope) and discovered the four brightest moons of Jupiter, proving that there are things in the Solar System that don't revolve around the Sun.
Physical cosmology is the branch of physics and astrophysics that deals with the study of the physical origins and evolution of the Universe. It also includes the study of the nature of the Universe on a large scale. In its earliest form, it was what is now known as "celestial mechanics", the study of the heavens.
Hope this helps you :)