Answer:
s = 52.545 m
Explanation:
First, we calculate the distance covered during the 0.5 s when the driver notices the light and applies the brake.

where,
s₁ = distance covered between noticing light and applying brake = ?
v = speed = 18.6 m/s
t = time = 0.5 s
Therefore,

Now, we calculate the distance for the car to stop after the application of brakes. For that we use 3rd equation of motion:

where,
s₂ = distance covered after applying brake = ?
a = deceleration = - 4 m/s²
Vf = final speed = 0 m/s
Vi = initial speed = 18.6 m/s
Therefore,

So the total distance covered by the car before stopping is:

<u>s = 52.545 m</u>
The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
I think it’s a nebula i hope it’s right
Answer:
The correct statement is "The electric field is directed toward the electron and has a magnitude of
".
Explanation:
According to Coulomb's law, the magnitude of the electric field due to a static point charge q at a point r distance away from it is given by

- k is the Coulmob's constant.
The direction of the electric field along the line joining the charge and the point where electric field is to be found and it is directed from positive charge to negative charge.
Conventionally, we assume a positive test charge placed at the point where electric field is to be found, the test charge has very small charge such that its charge does not affect the electric field due to the given charge.
The charge on the electron = -e.
The electric field due to an electron is given by

The direction of this electric field is from positive test charge, placed at the point where electric field is to be found, towards the electron along the line joining the two.
Thus, the correct statement is "The electric field is directed toward the electron and has a magnitude of
".