Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
<span>The radio frequency characteristic that best determines the range of a 2.4 GHz ism signal is the wavelength.
This frequency can be used in WiFi and can reach up to 46 meters when indoors and about 92 meters when outdoors.
</span><span>
</span>
<span>Earth's rotation is the rotation of the planet Earth around its own axis. The Earth rotates from the west towards east. As viewed from North Star or polestar Polaris, the Earth turns counter-clockwise.</span>
Answer:
The answer is not able to be solved, because we dont know what objects are in it, and how heavy they are. More information please!
Explanation:
Answer:

Explanation:
Starting from the equation:

First of all, let's multiply by t on both sides:

And then, let's divide by v on both sides:

So, finally
